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ACOUSTICAL SCATTERING FROM THE IMPEDANCE COVERED STRAIGHT EDGE

AND WEDGE; TH]E EXACT THEORY

ABSTRACT

The analytic extension of the Fourier integral from the half space

to wedge-like spaces leads to Sommerfeld type integrals. Theorems derived

by Malyuzhinets in conjunction with new methods of handling Fourier Laplace

integrals make it possible to apply the boundary conditions to the integrand

to determine the integrand furnction and thus to determine the solution

from the boundary conditions. The resulting M4alyuzhinets functions can

then be closely approximated by simple expressions for real and complex

arguments. The diffracted field then depends on the shadow boundary and,

in contrast to the classical theory, also on the orientation of the

diffracting surface. The diffraction field is described by the sum of

two terms. One term can be interpreted as a scattering effect because

of the discontinuity in the medium caused by the impedance surfaces; the

second could be interpreted as a field generated. by reemission of some

of the energy that is bent into the diffractor near the edge. This term

is equal to half the reflected amplitude at the shadow boundary of the

reflected. wave and. to half the amplitude of the transmitted wave -t the

sjhadow-lboundary of the4--- trnsit- wave. It- descibe the trivial condition

of continuity in the transition fiom the insonnified region to the shadowed

region. On the side of the incident wave, the amplitude is very nearly

equal to the excitation as though due to the reflection factor that would

obtain if' the angle of exit (of diffraction) were produced by reflecting

a ray on the wedge surface under the appropriate angle of incidence. As

a consequence. this second term vanishes %.t two angles (t:,u Brewstcr

angles) that are equidistant from the normal of the surface. In this

i
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report, the diffraction is investigated of a great number of' straight

edges and wedges whose surfaces are covered with various impedances.

The exact solutions are compared with approximations. However, even

the exact solution can be easily derived because of a simple ai, ,-er-

good approximation to the Malyazhinets finctinias.
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I. INTRODUCTION

The Fourier Integral for the Half Space and Its Analytic Extension to Wedge
Spaces

In dealing with propagation problems, we solved the wave equation in a

suitable coordinate system. Because the wave equation is of second order,

we obtain two independent solutions. Boundary conditions are usually prescribed

at zhe coordinate surfaces and at infinity. One solut-ion rcqucnt-ly has to be

discarded because it iepresents energy sources at infinity. In the case of a

straight edge (semi infinite plane), boundary conditions need to be prescribed

at both surfaces, i.e. the solution must be discontinuous at the half plane.

The coordinate surface is no longer a plane but is a degenerate cylindrical

paraboloid.

The standard Fourier method is not applicable to wedge spaces nor to

the straight edge. Fourier integrals converge only in the semi space.

The Fourier integral can be built up from plane two-dimensional waves:

p s e kjr) (k.1)

where S is an amplitude constant, k is the wave number, and
C

-2,32 2K -1K - w c;

The quantity w can be interpreted as the forced wave number in the x

direction at the surface y = 0; the quantity k is the wave number of the

wave that propagates in ohe medjim as a consequence of the vibration forced

with the wave number w along the plane y = 0. We may now prescribe the

vibration amplitude at y = 0 by a Fourier integral and extend the integral

to the y-space by including the k part in the exponent. Thus we have
y|



2

CO
'2 2. j(wx + Y li - w ) S(w)dw , (2.3)

-- m

where S (w) is the spectral amplitude function. The integral then represents0

a solution of the wave equation provided that it is absolutely convergent.

This is the case in the upper half plane if the exponent has a negative real

part for y > 0. and if S o(w) is bounded in the interval of i5tegration.

The convergence properties of the integrand are not affected by a

coordinate cransformation. However, it will be of advantage to introduce

cylindrical coordinates (see Fig. 1.1):

x =r sin T , y =r cos p --- w k sin a (1.4)

Regardless of the sign of the square root in the integrand of Eq. (3),

the transformation introduces onca more an ambiginity of the sign

(YT a - +sinH Cos a). The exponent in the integrand thus becomes

jkr (sin a sin cp + cos q) cos a) + jkr cos (qn T ,) (1.5)

The limits are given by

w/k = sin a= sin (a +j.)= sina coslh . j cos a sinh a.=,r r r 1
(1.6)

We find that cos a = 0 , a. = • o a - for w =m and that
r I r 2

- X = + U for w = -Co.
r -

V--
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We have a choice of two basically different values for each limit.

It does not make much difference which sign we select for the square root;-

convergence can be obtained for each sign by selecting properly the new

limits of integration. If we select the positive sign for the square root,

the integral will converge if

kr sin (cp - a ) sinh a (1.7)

is positive. This means that we must have

r

r• e r< .• -. _(1.10)For an we obtain for the limit-ts/2 of cp:

0 < t/2a <an or - < a<n g/2 (1.11)

Thus ar =- - when 9p is negative (E-o and. u -t wiiei y j

positive, or we may assume that a = n , and that 9p is restricted to the

intevalc) <(p - c). Similarly we find that a =+ ai/S for

a. -- -~.The transfonned integral is thus given byr

jk-+jscop

P(r'(P) =eik co( -as(k sin a) k cos a da (1.12)

i J

I5

inter al - (C• f ..) < qO<(
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If we assume that the path of integration pa~sses from + j• r. to - 2"

and from there along to - g/2 and then straight up to - 4- j•, then the

contribution of the path along the real axis represents the field of waves

in the direction cp that propagates at an angle <- a < K- with respect
2 2

to the real axis. The contribution of the vertical parts of the path

represents the field of waves in the direction cp that propagates along

the axis u - 0 and decays strongly with distance. We have no freedom in the

path of integration if the integral is to converge for all values of cp that

correspond to point-, in the upper half plane. Thus changing the variable

did not change anything basically.

Equations (1.1) and (1.5) derive the field from the boundary condition

at y = 0. This boundary condition is equivalent to a field that is generated

by a source distribution somewhere between y = 0 and y c- . In a wedge

space or in ease of a straight edge, we need solutions that converge also

for y < 0 and that are discontinuous at the surfaces of the straight edge

or wedge. This requirement excludes solutions in Cartesian coordinates.

Such solutions have the period 2S and would lead to the same values at the

two surfaces of the straight edge. If we want to perform an analysis in

terms of simple harmonic functions, '.hey must have a period that differs

from 2n. We are therefore certain that So(a) J S (a + 2y).
0 0ý

To introduce the preceding condition explicitly into the solution,

we writc the integrand in the following form:

S(a + it) - S(cz - n) = 2Lj So(k sin a) h ,os a (1.15)

S(a - n) can then be interpreted as the radiation from the front, S(a - i)

from the back (see Fig. 1.2). Front and back are separated by the semi

infinite plane, each point therefore contributes because it radiates into



- the front space and because it also radiates into the shadow space. This

particular geomet- seems to be impressed on the whole space. 'The physical

space is defined n-e, as the space - v < q) < a (Scnmmirfeld). All other

angles ( >iv" 1a) treosent a purely mathematical. space (the Riemann space

in the Somierfeld theor, , .Fhe reflected fields can then be interpreted as

being generated b, nirror image sources that are hidden in the Rieman space;

this agrees wil toce assumption of having only one source in tha physical

space.

The solution then is represented by the expression

~11 0 " ejkr cos((4)-
P(rC-) = z-- / e 6[Sicz + n) - S(cz - a)]d C

V - + jCO

31T
- 43C j -- +jc

ZICY ((a)4.- j ejkr cos( - (

,[+ j- W l

where we have introduced the new variable a' -- a+ a c.ý" = g - in the two

parts of the integral, written a again for a' and a", and changed the

limits of integratior correspondingly. The new paths of integration are

shown in Fig. 1.3a. We now assume that S(a) is regular in the range of

T'integration except for a number of discrete poles at finite distance from

the real axis. We combine the two halves of the path in each half plane

into a loop, getting the path 7(•p) as show.n in Fig. 1.3b. Poles at infinite

distances from the real axis can be accounte. for by considering their

residues. We thus obtain:

iP(r,) e- jkrcos((r) S(a)da' (1.15)

7 (n
Ii I
'I . -
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It is inconvenient to introduce limits that depend on m41. By changing

variables

(q) - CO = - 11 ,u = a - (P

a= u +d , da = du (1.16)

and writing a again for u the integral transforms into

e-jkr cos a S(,z 4 cp) du (1-17)(.1 e ( I) u( . 7

we are free to move the path of integration within the regions of convergence

of the integrand. Since the convergence of the integrand does not depend on y

the path 7 is the sane for all values of - T, < K< 0 . We have assumed

implicity that S(a + cp) vanishes sufficienitly strong at infinity so that we

are allowed to start the path at + jo and to proceed in any direction as

long as we stay in the convergence range of the integrand. For positive a.1

these limits are now given by

kr sin a. sinh a. > 0 , 0 < a < i (1.18)

if a. > 0 and by
1

-a2 < < - t, if a. < 0
S~r i

An analogous resalt is obtained fLi the negative half plane. The path I'

is as shown in figure i..4. It extends along the real axis from at least

- n to + it. It is apparent that the func.tion S(a) must be analytic for

at least the range - it-< (a r + 0) < it for a. c const.,

\ . 1
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or

-(it + D) < a6 < it + ~(.9

(i.e. except for the poles near the real axis, We thus have arrived at a

genera].ized Fourier integral which will converge in wedge-like spaces. We

shall refer to this integral as the loop integral in the following.

÷ - - - - - --
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II. PROPERTIES OF ThE LOOP INTEGRAL

(a) Derivative with Respect- to pý

The derivation of the loop integral is best performed in its form (l.1l).

Since a small displacement of the path 7(cp) into 7(q) + dp) within the con-

vergence range of the integral does not change its value, differentiation

can be confined to that of the integrand. Thus

-jkr cos (p - a)
S: "I® s(a)dc (2.1)

•(CP

jkr e sin x(cy + P)da (2.2)

P

where we have replaced a - a by - a' and written a for a' again.

(b) Condition for Zero Value of the Integral

The most important theorem that applies to the loop integrals is

Malyuzhinet's theorem I. A loop integral is zero

I e-jkr 0o s(zlz = (2.5)

if the function s(z) is even, i.e. if

S(z) - s(-Z) (2.. )

where

z = U + ij

I I
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To prove this theorem, the path of integration is deformed into the two

lines infinitely close to v = -o and u = +A (see Fig. l.4i) and integration is

performed either to the left or to the right of these lines so that the

exponent has a negative real part. Since cos (z) = __ (-z) and s(z) =s(-z),

the integrands along the line 0 > v > -o,. u = - ic and u = 11,.0 < v < are

equal. But since the directions of the two parts of the path are opposite,

their contributions cancel.

If the function s(z) increases at a high rate towards infinity, condition

(5) has to be replaced by a more complex condition.

(c) Inversion Formula for the Wedge Integral for p = const.

i4alyuzhinets also derived an inversion formula for the wedge integral.

If

As - s= (- _< arg in < (

s(r) Pj mr coo a S(a)dc (2.6)
2 7 I

then

ci

/( - m sin c () -mr cos a.

The derivation is straigjhtforward and given in the referencu: G. 1. Malyuzlinets,

Inversiun Fornula for th. Sormmcrfeld ý Inttrra,4atmhumatical Soviet Physics
focl•ady 3, 1.958, 5P-5)i.

I
Sq.

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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III. BOUNDARY CONDITIONS

The function S(a) is detennined from the boundary conditions for the

sound pressure at the surfaces T = +D . For a wedge with pressure release

surfaces

P(r,o) = ejkrcOs S(a + t) da = 0 (3.1)

To satisfy this relation, S(a + (D) must be an even function of a. Thus

S(a + CV) S (-a + D)

S(a - C) = sC-a- C) (3.2)

if we replace ac by a - (P in the first and by a + 4) in the second equation.,

the icft hand sides become equal and

S(9) =SC-a - 2&D) =S(-a 2,1) (7_.3)

This result shows that the solution has the period 4s. As pointed out in

Section I, Equation 1.19, the solution must be analytic in the band

{e(cz)_ < 'P i• except for a pole fur qy = 0p, whose contribution ropresents

the incident wave. The simplest function that has a period 4,1, has a pole

at a (p)o. Such a fuinction is,

S()1 (7
S sin j-L (a 5.



But this function does not satisfy condition (3.3) because

S("a + 20)]= ssnt- 2-- (a ± 'o $ 3(a)
2(-a (-a + 20 - cp)] = sin[k2L (-a - o )+ 7(] = sin + P

(3.0)

But the prcduct of two functions of the type S(a), one with + yc0, the other

with - o in the argument will satisfy our requirement because of the symmetry

which is thus generated. We are thus .ed to assume that

S (a) 1

S(a - qp) sin 2L (at -i) (.6)

S((n) still has a pole at a = - i0; but , = I p0 represents an incident

wave in the physical space (- D < p < 0). But there is no secotiC incident

wave, and this pole must be cancelled by multiplying by a periodic

non-trivial factor, A, that has such a pole. The factor

A=sin -L a + sin L :Po (5.7)

f!ulfills all requirements. It cancels the pole and satisfies the conditions.

Hence we have

s(u) - B sinl (5.8)

Sin 2L (ca + (Po) sin Z- (a -)

The residue of S(ca) at a i 0 is unity if'

B: =7 cos • po (5•.9)
24 20

its.fl I.en Nw1 Aa..&~w 6ji ''" ~ -~- --
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We thus arrive at the solution

COS It- C 0o [sin T( a + Sill C4)]

IT 2) 21

sin , (a + (P0) sin cp)
2(D 2(D

cos ('-'- ) 2 sin , (u + cpo) cos (a (a - p

2(D

1 sin -Z.- (a + cP) cos (a -. (Po) sin .- (a - o) cos .2 (a -

Co.• si 2"7 (CP qO os ( +<
00

Cos ( f- , Cos IT ( ++ (P + sin _ ! _ ( •) sin • _ ( + ,o

IL C

si sin 0• (- o)(cos ,(C 4- +"

4,ý,

coin_. (a- p+tar,. (ai+ ) (a

() 0 os (a f)

2 scn -( - sin x(a

which is ea-sily deduced from the third forrm on the right. T'he cosine factor

in the numerator is a consequence of the pressure release boundary. Th~is

factor is zero for (po = (D . We thus have obtained the well known Soir=erfeld

integrand for the pressure release wedge; in eonmtrast to Sommerfeld's

heuristi- procedure the method above is based only ork mathematical deduction.

,4'

whlich isoeaily dteuceid fr the thirdbforote reriht.i h vesimilarmanefactor.
itenmrtrisacAAuneo tepesr eeaebudr. Ti
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Malyuzhinets has derived a new kind of Fourier-Laplace analysis which

can also be used to der-ive the function S(a). But i~n case of the Sommer-

feld wedge, the Malyuzhintts Method is impractical becatise of the complexity

of the integrals that result and the preceding method is preferable.I

Ii

*1

II

Ii

ii



IV. THE FOURIER LAPLACE ANALYSIS OF MALYUZH1NETS

Functions that increase exponentially toward + co or approach finite

values at + co can be represented by Laplace integrals by separating them

into two parts, one part representing the function in the interval 0 to C0,

the other zero part representing the function in the interval - cc to 0.

This procedure leads to two different spectral functions. To compute

inverse transform because of their different regions of convergence, each

of these two functions has to be integrated over a different path. The

analysis that has been introduced by Nalyuzhinets is based on a single

spectral function F(w) for the whole range of integration. However, the

representation of this function depends on whether the line integral is

at the left or right of the imaginary axis. This simplification becomes

possible because the fields we are interested in either approach finite

values ox vanish at -I . The integil that occur in the various computa- -

tions usually contain sines, cosines, tangents, and groups of functions

of a variable z that are regular in strips, a < Re (z) K b. For instance,

1/cos z is regular for -o/2 < Re (z) < . We therefore limit our study

to functions which exponentially approach constant values for Ln(z)-'-I-cc

when a < Re z < b. We thus have by definition

f(z)-f(jm) + 0 (e-}3Im) = f jQ) + 0±ejZ' In(z) -j . (4.!)

f(z)- f(-jexj + 0 (eC- TI(s) = f(-jr) + o -jshz} , 0,(s)-.- (.2)

ti, •x positive constants



The analysis we are going to develop could be extended to exDonentially

increasing functions as lIm(z)j ---- •. However, we would then loose the

effect of the constants f(J-) and f(-j-). That wave fields differ at +

infinity is easily illustrated for a half plane as diffractor, half the

incident energy will be reflected back at the semi infinite plane. But at

great distances from the plane, the shadow space will be filled up with

energy by diffraction and the amplitude will approach 1/A/2 times that of

the incident wave. Thus the wave amplitude will be S at + c, and So/IV?

at -

The function f(z) - f(-j•) can be represented. by a two-sided Laplace

integral because it vanishes exponentially for Im(z)--- , and approaches

a constant for z = + jo. To derive this integral, let us use the notation

of Malyuzhinets and prove that the integral

joc
F-(w) [f(z= - eZ dz , 0< Be w <K (

converges for 0 < Re(w) < i , and that the integral

rF(w) = ,/[f(z) - f(j-)] eJWZdz <- < Re(w) < 0

-jCO

converges for -k < Re(w) < 0. To perform this proof, we divide the integral

(4.6) into the two integrals

-_ f-) fo(-) e dzSj' (jcolJat~ ~~
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The first integral exists because f(z) is analytic and f(z) - f(-j-) vanishes

at its lower limit. If we replace f(z) by Eq. (4.1) the first integral

reduces to

0 0

L/ (f(-j) f(-jo) + 0 te-j~] ] e dz - 0 (ej(w 4 )z) . (4.6)

This integral converges, provided Re(w) = p.< 0. In the second integral we

write correspondingly

j-

/[f(j-) - f(-j-) + 0 (e jIIz eJWZdz (4.7)
Ll

0

This integral converges if Re w > 0 and Re(w) + 7 > 0. The three conditions

then lead to

0 < Re w < [ (4.8)

The preceding formulae can be inverted as is proved by methods well

known in Fourier analysis

jCO
f(Z' *p(._ _ I /) )*, J -;Jwz (L )

-jOO

provided .. < Re(w) < 0 and

Jwz (4.,10)
f(z) - f(-jw) = FT( J F(w) e-j dw

provided 0 < Re(w) < ii If we suistract the two equations from each other
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F (w)e dw FJ F(w)e wl (.

where we have replaced the condition Re(w) > - ?\ by shifting the path of

integration by E to the left and correspondingly the condition Re(w) < I

by shifting it by E to the right where E > 0 car. - 8 as small as we please.

Since f(z) is analytic in the strip a < Re(z) < b, F*(w) and F- (w) cannot

have any singularities other than for Re(w) = 0, and cannot have singularities

for Im(w) 9 0 since the integrand is analytic in the strip and finite at

infinity; the only admissible singularity is a simple pole at w = 0 since

F(w) is single valued. We have for w 0 0, by applying Eq. (4.3),

F~)Chs M~)jwz e•W +&ejw
F(w) < li M j ejwz dz - liam jw = finite (4.12)

The right hand side of Eq. (4.11) reduces to the integral around the pole

at w = 0 and F(w) becomes infinite for w = 0. The residue of F(w) at this

pole is given by

residue • 2Aj= [f(jm) -f(-J)] 13

for all values of z. This shows thaUL F F . A olie 1igo-ous proof can

be derived with the aid of the Cauchy Chilbert transform representation of

the Fourier transform.

We can still improve the symnetry of the reverse transform by adding

Eqs. (),.9) and (ti.lo) and dividing by two:

jCO-C

f(z) f(jc) + f(-j)]l + . [ F*(w)e-3wz dw

jcfl+e(t)

+ L + F (w)e-iWZdw]

~j00+E
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where F (w) and FN*(w) are given by Eqs. (4.3) and (4.4). We can drop

the star and the double star. F(w) is an analytic function which in the

band - 7' < Re(w) < 0 can be represented by the integral Fx*(w) and in the

band 0 < Re(w) < -L by the integral FP(w). Equation (4 .34) represents a

very convenient and also the most general form of the solution. But for

the final evaluation, the two integrals have to be combined and written in

a standard form. This can be done, for instance, by shifting the path of

integration of the second integral to the left, and adding the contribution

of the residue at w = 0 to the result (see Fig. 4.1):

-E+jcO

f(z) = • [f(j.) + ft(_j.)] + [F*(w) + Ff*(w)] e-C dw

+ residue atw O) ((w.05)

or by changing w into - w in the second integral of Eq. (4.14):

- E+joo

r(z) = k [f(jm) + f(-jo)] + 1-• [F*(w)eWZ dw + Fv(-t)eW2Z]dw (4.16)2 2 -,r2 Z€j

Frequently, integration can be further simplified by discarding the odd parts

of the integrals but retaining possible contributions at the pole w = 0.
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V. THE IMPEDANCE WEDGE

(a) The Solution

In this section, wedges will be investigated whose surfaces are

covered by acoustic impedances. The reflection factor for a plane incident

wave at a plane surface of acoustic impedance z, is give" by

C 0os i Cos _ - Oe
-PC z Cos Q - cosi

P Cos t + Cos 1+ P cos (p + cos (5.1)

where cp is the angle of incidence with the normal to the surface. For

the angle given by

Cos 2= 1 CO s - s ini (5.2)

the reflection is zero. The angle 3 :r1/2 - 7 is defined as the grazing

acoustic Brewster angle, 0 as the Brewster angle with the normal to the

surface. This definition applied formally also fur complex impedances.

In deriving the acoustic equations for wedges, it is of considerable advantage

to measure angles from the central wedge plane (see Fig. 1 .1). The wedge

surfaces then are given by cp = + 0 The boundary conditions

that have to be satisfied are: (1) For the upper surface, where q = 0,

S+P +

(time factor e'mt)
(p c lipc (5.3)

or if we introduce the Brewster angle

.......
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jk p sin 3+-- r( -(" (5'4)

For the _yzer surface where cp = - , z z ; 0 = 0_

jkp sin' = 1 (5)

If we apply these boundary conditions to the integral solution and using

Eqs. (2.1) and (2.3), the following equations result:

(sin a + sin '%) S (a + - (sin a - sin =3+) S -a + 0)= 0

(sin a + sin -3) S (a - ) - (sin a - sin 3_) S (-a - 0) = 0 (5.6)

It is apparent from the Kirchoff theory that the impedance cover of the

faces of the wedge will. not displace the shadow boundary of the wedge surfaces

significantly and it is obvious that it cannot effect the pole nor its residue

that represents the incident wave. If, therefore, we write the solution in

for form

5(a) 0() ja (5.7) I
where

cr(u) is the Sommerfeld form of the integrand of the loop integral
for a pressure release wedge,

Cu() is a function that describes the effect of the impedance cover,

'((P) is a hind of normalizing factor,

then o(a) will contain all the poorly behaving parts of the solution (poles

describing incident and reflected waves) and 4(a) will be a well behaving
0 )

function with no poles within the range of integration (but it may have poles

S| " l • .. .... ... ... J
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at the extremes C = + T). We shall see in section ( XII) that the solution

of the impedance wedge must be based on the pressure release Wedge and not

on the rigid wedge. The impedance wedge backscatters at all angles. The

rigid straight edge does not backscatter when the wave impinges parallel

to the plane of the straight edge so that ýp = 0. The resultant solution

would, therefore, break down for co = 0 if a(a) were the integrand for the

rigid wedge. If we enter Eq. (5.7)into the two boundary equations above,

we obtain two equations of the form of Eq.(5.6)for the function r(cz), S(a)

being replaced by *(a). The a(a) part cancels out left and right because

a( a) satisfies the conditions (3.2) for a pressure release wedge. To solve

equation (5.6), we take the logarithm left and right and differentiate.

Because the logarithm of (-I) is jr, and its derivative is zero, we obtain:

Cos a( + 0 Cos (s a'(-Q + I
sin a+ si~ni+ ",(a +(D- sin - sin + - - + ,) (5.3)

A similar equation results with 30+ replaced by a_ and CD replaced by - C.

Next we introduce the now function:

ý, Ce + ,
-- a+ •' a + )) (-)

The Malyzuzhinets transform of f(ca + 1,) and f(-u A- D) then are given by

(Eq. 4.3 and l..4): :

Mf (a A 1o) e -jw, F(w)

:1 4f -+ 1') Q= ,.,j , F(-w)

S''--,-".-. - --5.- - - - - - - - - --.-
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where mf(cz) F(w) is the Malyuzhinets transform of f(a) nand the letter 14

means symbolicall Malyuzhinets transform of f(cz). Let

COS) = cos •cos a 2 sin 1 cos a• ti co 0
sin a + sin - sin a - sin - 2 2 cos 2a - cos 25a~ C - Sin

2 sin 3 cosa 1 1
- sin(a + 3) sin (cc- ) = sin (a + 1) - hin --- (5.11) 1

I
where 3 is the grazing Brewster angle and 0 the Brewster angle with

respect to the normal to the surface. We have omitted the bars above the

symbols 3 and 0 that mark them as complex quantities. The transformed

equations (5.8) then are

9+(0) +- e\j-(t F(w) + eOjw F(-w) = 0

g(w) + eJ•li ••w) + e- ' 1 F(-w) 0 (5.12) -

where g+(w), g_(w) represent g(w) = Mg(cz) with - replaced by 3_,. ' I-+'

respectively. Elimination of F(-w) leads to: I

,!

g (w) e -V(w• - g ( ejwq
F3(w) = 2j sin w,, (5.15)

Because g(-jw) and g(+-j,) are zero, the inverse transform of the first term

of Eq. (5.15) then is represented by

b "4ju, C '+J0 +J"

-- "cl- / Qz& +• si( - '3] 2j si7•2T?7)-

"-.m (.(1l-



where we have •ritten d for 13. In the second integral we replace w by

-w. The two paths then coincide, and the two contour integrals can be combined:

3o- jo,

-l1 sin w(-z-)f(Z P i d - ----- s dw (5 .15 )f~~z) ~ i riZ a! qZn( -a) 7sih•-a 9)sin (21,w)

S•' (z •'+ ( - ) inthe istfator

Next we replace a + 0 by a + -3 - + in t first actr

and u- bya-" 3[+ !=" -[=- a)] in the second factor.

1dal dw

f(z - I sin w[a' - (z + ' + -3 - 2)]

- 0 C 5"invw[a -(z + 'gi n + )] dw (.!)

7~• sin w[C!5w(

Since there is no poie at -TC/2 > ce< g/2 , we were allowed to discard the

real parts of the limits of integration, We can perform the w integration

first. T'he following integral is of a, tabua•ted form:

sina dvi vJ tan Sn av d
.... _ tan -a (5.17)2, il wb w= / .sn h vb

Performin-ig the w intcgra.ion in the first integral Eq.. (.16) we obtajn:

z) -& - v_~dvd. tan[C/-------~. co , a-Cos

whore

-- A
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a-(z + + v

z = V + + -

2

The w integration in the second integral leads to a function f 2 (z) which

differs only in that - -v/2 is replaced by -(,S - </2). Two more such

functions then would result for (-- ) the face p = - , which are

similar in form except that 3 -- -.

Four integrals arc of different form, they are obtained if we perform

the a integration first. In this case it is expedient to combine the two

integrals, Eq. ().16) and to write Z = z + 4):

f(z) d,. a In w(ci-n w (,a - Z,2in (- Z ± Gf ~Lz) *Co U • c•sin 2 4,w

-JEO -jW

3J jw

*t sin wc' - 7.) coosr dw
21( Cos a sin 21W

-j&3 -300

jwO jcc

sin wo eon w 7. - cos wc sin w,7½)cos wO dw da
'cos ca sin 2w

-3W -juw

coo wva sin wZ cos wO
-CO siit2w dew (5.20) -Z•-Jw -j• -

because only the cvcn part of the a integral contributes to the integral.

The a integration is of a tabulated form:

jw

/ coswa da = 3 1 cosh wu du = .SL(....1
co 0a ~ J ccLAI u wiT.-j,,icn cos ,

0~
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and

jmc 00

A s~ viZcos w,9 fsinh sZ cash s0
£(z) = s2 v .n w7 dw=~ - ds (.1

2

1 U smnh.S( + ) d - sinhs(z - 0)s ds (5.22)
_2 / cash (s 2) sinh 21)s 2 co:sh(, Thsiim 2týs

0 2 0 ~ 2

f(z{) +f(%ý)

where

- . + ~,-(L -
(.3

2

and

1 sinli 7sds

2 cost) s sin 24)s
02

Again, two more termns resultL for the contributions of the face pq -4)

which are similar in form excepit that 4) is; replacedl by 0,4, and denotes

03-. The logarithmlic derivative ofthe so1(, lution thus cons~ists of the sum of'

four torn's

- 2L~Li-4' ~ d7 i~ -I )-i-(z - I i-f(z -

'a -j .T 
Z 

.. mz +. 'j



26

We still have to integrate each term up to the desired value of z . We

assume arbitrarily z' = 0 for the lower limit of integration. This pro-

cedure is admissible because the resultant solution is represented by

'()/•r(co) so that the integration constants, which lead to identical factors

in i'(ca) and *(cp) cancel out in the final expressions. We thus have

f(' f (ze• (•) (5.26)

0

where

z2 = z +D + , z31 z-

Z' = z + q - 0+21 -4 -

ard

4r(z) ~(Z' )*v.(Z.).' z~ i.()(.7

because of the exponential nature of the solution; the exponents add, the

.Tnctions multiply. We may still write the arguments in full:

,•,(+ = 'D• + +
.(Q. . D + -0 .) •(±++- +-o ) q)(c- •,+ - ) +j• - _

+ 4-)

= , .4-,( + + 0+) • (• + . 4) %(o• _ 1 + o.) 4(cz - - o_) (5.28)

'The solution of the diffraction problem then is given by

I P-~ik•r coS(a - )P (r/,p,I) / 2-•i-i~o a(.9

P

where

S(u) =o(u)
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'0
Cos N+ 7 C6a(s) (Pot -(c -p) +t (5--50)

sin si- sin 2t"

The exact solution is given by

1 -njkr cos a y(a + T) R'Po IT(a + ýP) si -) (.1
p(r,cp) = cos -- 0 (sin -2 sizn c

If, assuming kr > 0 , we deform the integration contour P into two paths of

steepest descent through the saddle points C = n i.

p(r,c2)) e2 + fD-~ it) 1(72
2 .) 21ckr L I1ýi (q4 ~ pc) -)(T

where 14 and NM are the Malyuzhinets angle factors
K2 2

sinl•q -• sin-i~
0-Cos -

14 =.

sin 2 (D ± sin --

2(Cbt +it)1

sin si
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VI. THE MALYUZILINETS *,,(a) FUNCTIONS AND THEIR APPROXIMATION

The Malyuzhinets function *(a) is the solution, Eq. (5.6) without poles

or zeroec in the strip Re a! < 0o They are usua] ly computed by developing

the integral solution into a series up to the pole of the integrand, or by

evaluating the integral directly on the computer. Beyond the pole of the

integrand, the integral no longer represents the solution of the problem,

and one of the extension formulae (see Appendix A) must be used to determine

the functions for greater values of the agreement. Figure (6.1) shows 40 (z)

for real z =a + a) + 0+ as a function of z; Fig. (6.2) represents the same

function 1 7 1r7(z) and Fig. (6.5) the phase angle for complex argument as

a function of the real part x rwith the imdginary part x. of z[Jm(z) as

paramete 3].

TFhe 4, functions are relatively insensitive to the argument a except

for argument values near their zeroes and their poles. A small imaginary

part in the surface admittance increases the magnitude at the zero to a

finite small value, and reduces the magnitude at the pole to a finite value;

the effect en the resulting function is practically negligible if Im pc/7 < 2

(see Fig. 6.2). The surface then acts as if its impedance were real. If

the imaginary part of the relative surface admittance ncT exceeds 1, the

curves become almost horizontal and the wedge acts as if it were pressure

release. Because of this relatively small sensitivity of the diffraction

field on the impedance on the surface, we can expect that the results also

apply to boundaries that cannot be described by point impedances, such as

plate boundaries.

Computations with the lMalyuzhinets functions are greatly simplified

by the relations that exist between them, and which are su-nerized in

Ka S



appendix A. Frthermore, there is no need to evaluate the defining

integrals. Since the Maly-uzhinets functions are smooth functions, they

can be approximated to a high degree of accuracy by an expression of

the type

cos aos
Vfd(ia) = zero (6.i)

Cos ( oe
Pole

where zero and a are given by Eq. (A22). This function reproduces the
zero pole

exact slope and magnitude of *(a) for a = 0, and is zero at a and infinitezero

at the pole at a ole; the second cosine factor in the numnerator then is used

to improve the fit in the pole region. We find the following values for ;3(P):

, 0.51 1/15 O.jir 3/8•[ 0.51 O.7 O.9( 0. it-

4.63 5.O1 5.87 5.56 6.98 8.6 9.72 10.49

These functions approximate '%(a) in the whole range, also beyond the pole-

and in the complex domain. Fig. (6.4) and (6.5) show the functions P(0)

and *1 .(0) as computed by Eq. (6.1). The exact values have been

computed by Zavadskii and Sakharova which fall on the two curves.

I -
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VII. TILE ANGLE FACTORS OF THE MALYUZHINETS SOLUMTON

The angle factor in the Malyuzhinets integrand results by adding the

two angle factors that occur in the Sommerfeld integrand for the pressure

release wedge (see Eq. 3.10). The Malyuzhinets stationary phase solution

then cortains the angle factors

CO os i- (o
Ssin - ( - it) - sin --

and

Cos - o

2M o (7.1)
sin - (cp + it) - sin • o

We shall assume y is positive. For negative op the two angle factors

simply interchange. The angle factor is plotted in Fig. (7.1) for a

straight edge and in Fig. (7.2) for various wedges with the angle of

incident as parameter. If T > s2, ern has no poles in physical space

negative. 1•. increases towards the limits qp = + D of the physical space

without reaching a maximum (where the slope is horizontal). The two

greatest values of M then are given by

+ - :0: p (7.2)
iCos g sin T
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M, then has a minimum for ( - n)A/20 = -g/2 or p = n - P when the

diffracted ray propagates along the continuation of the face 0 = -1 of

the wedge,

cos ( 7.3

1+ sin - 0

and then increases constantly towards the faces p + 0 of the wedge to the

value

+ cos g sin To
max -2

The second angle factor

itj

0z 0(7(

has two poles, one at the shadow boundary of the reflected wave (p

T- (o) and one at the shadow, boundary of the incident wave (Ip .- + ).
0~ 0

Tt has a true minimum between the two qhacIow boundarics fo- p - i:

(0

(i21) "'o
(oA °(7. )

2 MinjnI 1 - 6in (p0~

and it decreases from the shadow boundaries towards the wedge at q) =i

to the saine values as those given by Eq. (7.2) for 141 at + q,.
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If q)o is negative and p0 is replaced by - cp, M1 changes into M2 and

142 into M. Fig. (7.la) shows the basic shape of the curves 15(0I) and

Mj2(,!) and the angular ranges in which each term is positive and negative.

Figure (Y.1d) to g show for comparison also the Sommerfeld and the

Kirchhoff solutions for the rigid and the pressure release straight edge.

We find that M2 is not very different from the Kirchhoff or Sommerfeld

solution for the pressure release straight edge. Figures (7.3) and (7.4)

represent the angle factors for baekscatter when p = T as rectangular and
0

polar plots. M, and M, turn out to be the exact mirror images of each

other at the axis pi = 0. We can confine our attention to the space 0 < ( P 0,
-0

because when looking at the backscattered field we can always assune we

are in front of the plate (qp > 0). The maximum of the angle function

M1 then represents the diffraction at the shadow boundary of the reflected

wave when it is coincident with the incident wave. i.e. when it jmpingie.

normal to a wedge surface. This is the case when the transducer is just

at the shadow boundary of the geometrically reflected wave. In practical

situations, the transducer will be within the cone of the reflected waves

or it will be outside. Inside, diffraction does not contribute much to

backscatter. Outside of it, the received signal is exclusively due to

diffraction. The amplitude of the received signal then decreases greatly

with the angular distance from the shadow boundary.

For pressure release surfaces:

pc/z = cos z = cos (Or + joi) : cos 0 cosh 0. - j sin 0 sin 0. (77)
r 1r I r 1

Because the real part of the impedance must be positive, 0r w u

r 2 ~ , we must have

But as a.i- , A(Y+ j-4 co, -- ( -.-- (see Fig. 6.2 ) and the *,, functions

in the numerator and denominator cancel. Thus the multiplier T(a + qc)/v(Cv)D 0



and the ;3ol],U7on is ,iven by

j (kr +±)
S-r (Ml + M2 ) (7.8)

The two angle factors then simply add up, and the resultant expression reduces

to the classical solution for a pressure release wedge.

For a rigid wedge + = 0 0 , and by Eq. All

( ' (-1 [cos Ti (a + 4) cos v .-

*a ~2 Lcsl2 +co1) 20x (729)

and

Tr
S(C) 2 s ,_ (7.10)

For a straight edge, the functions (r - iA) and ,,(rn + ix) then become

proportional to sin cp/2 and to - sin (P/2, and the two terms in the

Maly'uzhinets solution counteract each other in the angular range yp > 0

Thus, the solution for tne rigid straight edge becomes

- (T r + k )r sin (f/2 M I siT

V.okr os 0j0

Comparison with the corresponding Sommerfeld solution gives the Sommerfeld

factors in terms of and M2 , (see Appendix B). The converse procedure,

i.e. the expressing of the factor l& and 142 in terms of the Sommerfeld

MI
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factors leads to very compex expressions that contain also the angle

functions of (i'/24)(a) a4d of T('/24'.

For an impedance matched wedge:

sin/2, 0= 0 (7.12

and by Eq. A1h

2I
t2 (7,13)

* =

The 0 function then is proportional to the square of the 4,/ 2 (Cz) function

that is plotted in Fig. 5.1a. For a straight edge, 20/2 = r and the zero

of this function occurs for a =(5/2)i , and that of the solution for

w + t =(3/2)n, p = <L/2; i.e., there is no field reflected or diffracted

normal to the surface of the straight edge.

-J



VIII, THE MALYUhZINETS FUNCTION AND THE CLASSICAL REFLECTION

FACTOR AND THE EXIT FACTOR

The second term in the Malyuizhinets stationary phase solution (Eq. 5.32)

i& closely related to the classical reflexion factor, If cp is the angle of

incidence with respect to the plane of symmetry of the wedge, the angle

(o of the incident wave with the normal of the wedge surface((p D- v/2)

is given by (see Fig. 8.1):

-< A2 - (P0(8.1)

and the angle of the reflected wave with the q) 0 axis by

IT) - /+ p 2" - -o (8.2)

For this angle, the angle factor M 2 (Eq. 5.34), in the Maliazhinets solution

Eq. (5.32) has a pole which determines the field at the shadow boundary.

To evaluate the solution for the shadow boundary, the integral (5:.31) is

written in the form

p h~(V) rg(z)~ 83

The stationary phase solution then, when z coincides with the stationary
0

phase point, is given by

p n )erg(s) (8.t)

S(see Jones, The Theory of Electromagnetism, Pergamon Press 1946, New York,

p. 690). Thus we find from (5.±) for the contribution of thle saddlc point

Re(Z) = :t:



z,6

p(rcp) j11 I e jkr VOT + P) cos(ITT/20) (

- COS • (n 4 14)

= 1/2 ejkr (i(2e - Cfo)

01

It is showm in the classical theory of diffraction* that this term should be

equal to half the amplitude of and of opposite signs as that of the reflected

wave.

Thus, we are justified to interpret the ratio

- C(P - ( ()
_ _ , (_ _ _ _- ) = • ( n ) ( 8 .6 )

as the reflection factor of the wedge surface for a wave incident under an
. , .A

angle ( P - c9) with respect to the plane of the reflecting surrace. To

prove this conclusion, let us assume for reasons of simplicity that both

wedge surfaces are covered with the saine material so that 0.= 0- =

We then have (see Eqs. 5.2j and A13):

+ 7(j) (0.
cz ±U) -(8-7)

-- c•-P ., + "h • .(q, - -)

4 and using5 Equation A15:

Skudrzyk: Foundations of Acoustics, pagu 570-571, Springcr Vorlag, flew York.
and Vienna, 197,.
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- %) t 1 2(241 - tp +-V) J,(2_ - "P
'v~) ~ /2~o 77 41%2 - 0)

=cot 1/2(-T0 +7+ a/2 + I) cot l/2(-%-O " + iT/2 + ID)

cos e - sin (P- (p + 4)

0 + (8.8)
0

But I -(P is the grazing angle of the incident wave with the reflecting

surface of the wedge. If we replaced 4, - %0 by the angle with respect to

the normal of the surface, the sine would be replaced by the cosine of

that angle. Thus, R(y ) is identical with the classical aeflection factor

of tec impedance covered infinite jurface. This classical reflection factor,

therefore, describes the effect of diffraction at the ,shadow boundary.

The impedance covers of the wedge surfaces modify the diffraction

phenomenon. This modification, relative to the diffraction of a pressure

release wedge, is described by the functions

a- ) nd CP - (8.9)

"D.~~ ~ 0 ....... (q) /.."0)_

Bccý,aoc,1/•,q is a•"uu n LhaL varics very iittle with the angle of incidence,

thu above two functions are practically independent of the angle of incidence.

This2 conclusion is the most remarkable result derived from the exact theory.

It is thu angle qp of exit of the diffracted rays that determines thc in-

fluence of th,- impudance, regardless of the angle of the incident radiation

(s.ee Fi. 8.2).

Tbc factor cos itqv /?' occurs als:o in the classical theory if the field is
fonmulated in the F4alyazhincts• form.

flj ni. ~ ~ .I ... -, , =-. ••, .t ta im~l..aM . -- .. . , ; ........ *Ij. ... . . ........... - . -.... . .
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For an arbitrary exit angle Q, we express the angle of exit by what

would be the angle y' of incidence for T as an angle of exit in the

second term in the solution; i.e. q) = 20 - T - .P" The second tern of

the solution then takes the form

S '(2 - cp[),~f)r(PY(810

0

It is proportional to the factor R((Do') which we shall define as the exit

factor. The factor in the rectangular bracket is very nearly unity as

long as the angle of incidence cp and the angle of incidence p' (if the

diffracted ray were a reflected ray) are somewhat different from + ¾.

Figures 8.3 show a comparison of the classical exit factor R(qo) with

the 14alyuzhinets function O(cp + -). If we divided t(cp + IT) by (p 1 it

becomes exactly equal to R(rP'). If we move the Malyuzhinets curve up or
0

down in the logarithmic plot, the two curves coincide for ( = cp', and then

the difference between the two curves will give us the error that results

if we replace <(q, + i)/t(po) by l(p. The curves prove that this error
0 '0

is practically negligible everywhcre except in the rcion near p = 0. We

thu:s u'ubain a very good approximation to the seconU. term by repLacing

MN (, + a )/t (4.) 4 N (q,)'

in the range qp > 0, p 0 > 0. The irripcdance cover reduces the diffracted

ray by the exact factor which is the samne ac the reflection factor for

a plane wave that makes the samne angle tjith the impedance surface of the

wedge as the cxj.t anglu p.
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For negative cp, Af(- cp + (()/p(O) = *(:cP! - t)/W(-p 0 ) is no longer

equivalent to the reflection factor, but is similar to the first factor

*(c) - jt) for positive qp. At the shadow boundary of the incident wave,

(Q= ( cp), qp + 9r = and T(y + v)/t(o) O(P)/(o) becomes equal

to unity. The first factor

((P -- 7P' 8.,<0 0 (%

where R (cP') is the exit factor for the second surface (3 -t), then
-0

represents the reflection from the second surface.

It is convenient to call the factor IA2 the shadow boundary factor.

It reduces to R(p 0) at the shadow boundary of the reflected wave, and to

unity at the shadow boundary of the incident wave.

La

I
I



4o A

IX. ZEROES AND POLES OF THEJ FUVCTIONS AND THE VARqIATION OF THE •

FACTORS IN THE MALYUZHINETS SOLUTION

The properties of the wedge surface are represented by the 4% functions.

The zeroes and poles of the V functions follow from the mathematical deriva-

tion. Tlhey can, however, be derived directly on the basis of the physics of

the problem. Since the Brewster angle adds additively to the argument of' the

functions, we can assume the simplest possible situation, e.g. matching

for normal incidence for the front surface impedance (0+ = O, po = - 2),

and pressure release behavior for th( rear surface. The pressure release

part then is very large and independent of' T and ýp and cancels out in the

ratio V(a)/(q). Thus we have

'1(a)%(a-4) .j 1~z)(..

The reflected wave in the solution is proportional to W(n + p). Since

reflection must vanish for normal incidence when T = p° = 1 - </2, we

must have

()+ T)r- = %j + (1, - A12)] 0

Hence the zcroes closest to u= of the fiuncti-ons (a) arc given by I
+ = 0+ 2$ (9.)

The wedge solution contains tije factor cos(Irp/ r )1 which vanishes for

grazing incidence unless * part becomes infinite. For a rigid surface,

0= <, and the reflected wave never vanishes, not even at grazing

incidence when (fp = - and p =4•. Thus (7-i A) must become infinite.
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Thus we have with 0. = </2

eTn at ()- ( + 0 + n/2)%(a - - c/2) (9.4)
hence at cp D

f(0 + n)-w%(20 + :) t(/t)• (9.5)

and the poles must be given by

+ a = +20 + 3v/'2 (9.6)
-p

The * functions have poles and zeroes also for al > 3t/2 + 20 , i.e.

outside the basic a - range. But these poles and zeroes are of interest A

only for the product and series developments of the * functions (see, for

instance, Eq. A61).

The terms W(cp - ic) and ('p + Tc) of the stationary phase solution are

made up of the product of four functions. Each term is zero, when one

Oi fLItU- al'utIlJe1ubs of the 4; (,,anne ULIV' U.ueuues C1 U LUW + E-J. The zeroes

of the 4(3c + cp) and *(it - cp) terms of the Maly-uzhinets solution then depend

on the 0 and 0- of the impedance of the wedge surfaces. Let us first
+

consider the term W(n + (p) which in the space 0 < tp < 0 is similar to the

reflection factor of the surface z+. The argument of the factors

0(C + i + ¢, A o+) = + L(v ± - 4- 0 0) + (2±, 4)- (97)

reduce to a = 20 + /2 , and consequently vanishes, iff
0

cp = ,- 0 + O+ (9-) I +

2- + -

+

i.e. when the exit angle is equal to one of the two Brewster angles 04 of an

impedance covered infinite surface.



Similarly, the factors

(cp + . 0 + ) =+ ¢[p + V + 3./2 - (2, + v/2) + 01

or+ •- 30+ (20 + + O]

or due to the 44) periodicity of

4=, + - + o_ +(2,D + (9)9)

vanishes iff

-0 - 3 _/Z + I
which. is not in physical space, or if

CP=- . /2-/ o <+ -(

The last value lies in physical space if Re(O_) = /2, i.e. if the z surface

is rigid and the wedge is degenerated to a semi-infinite plane.

The first term in the Malyuzhinets solution is proportional -to t(cp - 7t).

The zero values are given by

%(CP - z 'P + 0+) = [r - ,- C' + (24) + ,/2) - 2 + 0+1 (9.11)

Thus, due to the 4q) periodicity of 1%,

P=31+/2 + 0+ - 4nh

or

3j(- < '154 + 0+- < 4)-- <4'

Thus zeroes in the first fa(.cter can occur only if 'P < 35c/h + 0+/2. it is

convenient to consider the space qy > 0 only and to define for this space

the factor that proportional to /(cp + it) as the generalized shadow

boundary (and reflection) factor. and the factor that is proportional to

*(p - x) and which is usually much smaller than the scattering factor.
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The term 4'(( - i) of the solution then is practically independent

of the impedance covers of the wedge as long as p > 0. We have

if(N- T) = ( - if + ( +o+ th,(- xc+c- 0+) t<+p-x -+ +o)

"(D -xc- -_) ; (9.13)

all the factors have arguments that are within the limits

21 + 0 - + 0 (9.14)

and

_ •- •. e•.z. - e(9.15)

Their product therefore is practically independent of and depends on

0 only as T approaches zero. The terra g(cP A ) is taken as

*(cp + +) %$p-s xc 1 + 0+) %jcp+ + , +)

%jp- xc - O+ 0 (cp +- -- 0) (9.16) I

The first two factors depend greatly on 0.- because their zeroes are in the i

range of positive p. The arguments of the third and fourth terms then are

relatively small so that their product differs only little from unity. Thus

for positive q, <(p) - xc) is independent of 0+ and depends on 0 only in the

neighborhood of' q = 0. In contrast, W(rp q+ 7c) depends strongly on 0+ and

is practically independent of 0 For negative values of p = -q I)
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Ovp + it v(P 'p1+ ) O (jP r i)

-C q)w-i~ - =~fp + it) (9.17)

Changing the sign of yp interchanges the two terms of the solution, and

the second term in the space cp < 0 becomes similar to the first tern in the

space yp 0 except that 0+ and 0_ are interchanged. But, we have, however

to keep in mind that these two terms are not independent of each other and

that strictly speaking, we cannot seperate the solution into reflection and

scattering effects. Figure 9.1 shows the two T functions as a function

of the scattering angle. These curves have been computed on the assumption

that the two surfaces of the wedge have the same acoustic impedance. The

functions * I = *(cp - A) and 2 = *((p + A) then are completely symmetric

with respect to the angle c>p 0, i.e. ý(-y - n' = ý(p + n', ad *((I - )

*(-(p + g). The term M is zero for the two Brewster angles of exit for

q) > 0 and the scatter tens Ml91 is zero for the Brewster angles of exit

with respect to the second wedge surface p = - D when cp < 0

Figure (9.2)shows the * functions for a straight edge whose faces

have different acoustic impedances. In Fig. 9.2a, the straight edge is

matched to the medium for normal incidence. The shadow boundary factor

±(q) i4t) then is very similar to that for a straight edge. The scattering

factor is similar, too, on the side of the incident wave. In the half space

opposite to that of the incident wave, the scattering factor is modulated

by the exit factor of the impedance that faces the shadow space. Fig. b.3)

shows the samre as some of the 4((p H- it) and W(rP - if) functions as polar

graph s.
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X. THE EFFECT OF TIE IMPEDANCE OF THE WEDGE SURFACES

ON THE DIFFRACTION FIELD

(a) The Backscattered Field

The analysis of backscatter is simpler than that of diffraction since

we restrict ourselves to the half space in front of the scatterer. The

dornintnt term, also in the backscattered field, is the second term of the

solution. It is obtained by multiplying the angle factor M2 with the

Malyuzhinetz function g(ip + it)/*(,po). This function reduces to the reflection

factor for normal incidence and, except for angles near cp = 0, approaches

closely the exit factor of the reflecting surface. It is practically in-

dependent of the material on the other side of the straight edge. The

backscattered M2 V(c + CPo)/*(Cpo) field is thus modulated by the exit factor

of the wedge material; it vanishes for the two Brewster angles. But in

addition to this field, there is 'the field described by the first term of

the solution if(cp° - it) [see Eq. (9.14) and Figs. 10.1 and 10.2). In

contrast to the field MNt + ±• )/O(c), this field does not depend on the
0

impedance of the illuminated side of the straight edge, and depends on the 4

inpe •ance of the face in the shadow side only for small angles CPo. We would

feel tempted to interpret the M2 term as the field generated by the shadow

boundary of the reflectec wave and t'h M term as that due to the shadow

boundary of the incident wave. however, this interpretation of the Malyuzhinets

solution is not permissible.

For backscatter in the direction q = 0, the two Maly-izhinets components

always have the same sign and add up; this follows by considering the sign of

the components Ivyp(cp - •T) and M?,$(tj) + i) in Figs. lOl and 10.2. Thus there

is always a maximum of backscatter for (= 0 like in the case of' the ideally

pressure release straight edge or wedge (see Fig. 10.2). 1he width of this

maximum decreases as the surface impedances increase for a close to rigid

surface; all that is left is a needle shaped loop and for a rigid straight



edge, the width of this needle decreases to zero. The rigid edge does not

baekscatter for p = 0. The term ?Y1( VT° 4 ) has zeroes at the two Brewster
0 ~2 ' o

angles and changes its sign between thin lines. The term MJýr(cp - it) is
2-' 0

always positive from (p° = 0 up to the first Brewster angle. Both terms then

are positive and the field is represented by their sum. Beyond the first

Brewster angle up to 900 the second term becomes negative and stays negative

0until (p reaches 90 . In this angular range, the two terms substract. At

the first Brewster angle, the resultant field is finite. But above the first

Brewster angle, the two terms eventually become equal in magnitude and the

resultant field is zero. A computation based on the formulae given in

Anpendi:: A shows that this zero for a straight edge is given by COS e + Cos = 1.

In the example shown in Fig. 10.3, the zero in the Brewster angle is shifted

by about 27 degrees towards the normal of the surface. At and above the

second BrewaLer aLe61•, bubh teciis are again of the sa-nc sign and their sum

decreases drastically towards grazing exit; the second Brewster angle there-

fore does not seem to generate another zero in the resultant solution.

(b) The Diffracted Field

In considering diffraction, we also have to consider the solution for

negative values of (p. In the half space behind the diffracting plane, at

the shadow boundary of the incident wave, the ý(cp + z)/!(cp ) term then
0

reduces to unity since the field near the shadow boundary of the incident

wave is not influenced by the material of the reflector. Away from the

shadow boundary toward, the positive half space, this field shows a very
slight dependence on 0+. In contrast, the NL[J(cp - n)/t(cp)] term turns

out to be modulated by the exit factor of the 0_ surface (see Fig. 9.1).

Thus, the term which at first sight we would have expected to be generated

by the shadow boundary of the reflected wave is modulated not with the

4d
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reflection factor of the reflecting surface, but with the exit factor of

the surface in the shadow region. We are compelled to assume that this

term is generated exclusively by the surface in the shadow space.

We thus arrive at the conclusion that the diffraction field of a rigid

or pressure release diffractor can be basically attributed to the shadow

boundaries. But the diffraction field of an impedance covered surface is

no longer generated by thfe shadow boundaries alone, but is strongly modulated

with the exit factors of the diffracting surfaces. It exhibits minima in

the direction of the Brewster angles. Thus, the orinetation of the diffract-

ing surface is a significant factor in the exact theory in addition to the

location of the shadow boundaries.
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XI. COMPARISON OF THE MALYIZ.HINETZ THEORY WITH THE

KIRCHHOFF AND SOMMERFELD THEORY

In the calssical Kirchhoff theory of diffraction, the diffracting screens I
are black screens. The screens act as if they were the openings of infinitely i
long ducts. Any radiation that hits the screen disappears in it without the

slightest reflection. Radiation that propagates grazing to a acreen is

neither attenuated nor diffracted into the screen; and radiation that hhs

been diffracted once is no longer affected by the screen. The field at the

aperture is assumned to be that of the incident wave and diffracted fields

that propagate across the aperture are neglected in setting up the solution,

as a consequence of these assiunptions. The diffracted field spreads mostly

in the direction of the incident wave, and there is no backscatter in this

direction. This conclusion follows also directly from the classical

Kirchhoff integral. This integral on the velocity potential U contains a

source and a dipole term as follows:

-jkr/~r -jkr )U 1 e-jk-rer = - - (pcj kU cosO - pcv)
-1 41r on nC n r

e-k
_- _ 1_ (p (o05 - ov ) -- (11.1)

where

P= P Tz- !I Vn n-- (11.2)

and the term proportional to 11r has been neglected here. For a plane wave such

as the field that is assumed in the aperture in the Kirchhoff theory, these

two tuvnn.i can be combined to a term of cardioid characteristics. Because

for a plane wave Pcvn = p, the hirchhoff integrand reduces to

I.



e-jkr
- p (cos 0 - 1) (11.3

per

Thus the radiation is zero in the backward direction (0 0).

The diffraction field in the Kirchhoff theory can be attributed to the

discontinuity of the field at the shadow boundary. This shadow boundary acts

like a semi-infinite plate that vibrates infinitely slightly below its coin-

cidence frequency. The regions of positive and negative volume flow

counteract each other except for a region of about half a wave length width

along the aperture. This region then generates the so called edge wave.

Edge radiation and radiation from the shadow boundary are thus equinatural

interpretations of the diffraction that is generated by a Kirchhoff

diffractor. it turns out that for a straight edgt the Kirchhoff diffraction

is a maximum in the direction of propagation of the incident wave, and

exatr .. ro nnnnsite. It is crudely inversely proportional to the angular

distance from the shadow boundary and hence decreases monotonically.

The Sormmerfeld edge-wedge theory applies for rigid or pressure release

straight edges and wedges. The first term of the Sommerfeld solution

ej(kr + ') 1
u(r, -P (11.4)

2

is independent on whether the diffracting surface is rigid or is a pressure

release surface. It s-;atisfies the wave equation and satisfies exactly the

sonie conditions at the sercens• as the Kirchhoff solution. In the Sormmerfeld

language, the screens reprcs-ent the branch surfaces (the two-dimensional

branch cuts) that connect the physical space with the Riemann spaces (the

ducti that represent the Kdrchhoff screens). It satisfies the continuity

conditions at the shadow boundary of the incident wave. But the Sommerfeld

* _

• ' , , , , , I .... .. .. i .. .I;'F •:;~ l";' ...
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term does represent the exact field in the apertures as it would correspond

to Kirchhoff screens if they coulDd be realized. Because of this field,

backscatter is quite considerable.

h•ne corresponding Malyuzhinets solution is obtained by assuming the

impedance matched for the angle of incidence y. = </2:

cos qo - cos 0
R = 00(11.5)Cos Co + Cos0

0

Hence 0 =+ o= ; the negative sign is unacceptable because the impedance

must have a positive real part. This angle Co has been introduced in

Section 5 as the acoustic Brewster angle.

l'igure 13.l and -1.? show a comparison for normal incidence of the Kirchhoff

solution with the first term of the Sommerfeld solution and with the

Malyuzhinets solution for impedance match. The Kirchhoff solution shows

no backscatter, but otherwise agrees better with the exact solution than

the first term of the Sommerfel. solution. The zero of the M1alyuzhincts

solution at ( = Tx, i.e. at the impedance matched surface is obvious. Since

we have used a stationary phas2 evaluation, the distance from the edge of

the wedgc is assumed to be very large, as a consequence, all the field

energy is imp)edance matched at and near the im.pedance matched surfaccs. For

finite wedges and edges, thQ zero will usually be rezplaced by a minilmnu. It

is very ljihely that the Kirchhoff solution then will lead to still a much better

agreement with the exact solution that it does for the infinitely extended, wedge.

Figure ll.3 shows the two terms of the lMalyuzhinets solution plotted

separately and their smn, for impedance match at. norimal incidence. Thie

first term I is negative and reduces the resultaiit wnaplitude to zero for

rays that propogate grazing to the imipedance matched surface.

S. . . .. ... . . .. ..... .. ... • , m ,•._. •_• " • - _ • .• _ 7 .... ... .. ... .. ... . .. .j : . . .. -. .. • . ... . .. ....... . .. ... ...
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In the Kirchhoff theory, diffraction is exclusively a phenomenon of

the shadow boundaries or waves. We therefore obtain the Kirchhoff solution

by simply adding the field generated by the incident wave and, that generated

by the reflected wave, assuming that the reflected amplitude is R(rp ) times
0'

that of the incident wave. This solution then approaches closely the exact

Malyuzhinets solution on the whole angular range except for two regions:

(1) the Malyuzhinets solution vanishes along the impedance covered surface

because we have derived it by a stationary phase method, assuming that the

field point is very far away from the diffracting edge. In contrast, the

Kirchhoff surfaces do not affect grazing rays. The Kirchhoff and the exact

solution therefore must differ for cp - J; and (2) the Kirchhoff terms always

lead to zero backscatter. The two solutions with, therefore, also differ

for + C,-

The 1kalyozhinets solution shows that the exit factor should be used

rather than the reflexion factor. For the exit angle equal to the anglo

of incidence, the two factors are the same. Bat for other angles, the

results differ slightly. The exit factor usually leads to a better

approximation of the position of the minima of the diffracted field; but

in general, the deviation:: arc rot great bcaQuse, also in the view of the

exact theories., diffraction is busically a phlenormenon of the shadow

boundaries. i-t is the arngle of' incidence and that of reflection that

determincs the bulk of thu dif'fraction ptrciorr. ,igures J-1. .)1 11 .5 and

11 .6 show a comparison of the exact solution with the Kirchhoff and Somme1r-

feld. solutJon, the s=conld terms weigh ted both with (Po) and (r(,I)) Apree-

merit between the exact solution arrd the Kirchhoff reýsult is cxcellunt for
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the regions pointed out above ie. grazing exitj backscatter in direction of

incidence and reflected waves.

Tinally, we are very interested in wedges where one surface is rigid,

the other pressure release. The • function for this case reduces to

OPc) (c ± _ + jý*D%(a + ~ )=t~ cos(a + 1)~) +o(~

(11.6)

where we have assumed the + D surface rigid, the - ¢ surface pressure release.

The functions V ý,(a + jo have been dropped since they are constant and occur

in similar form in V(f). T'Me results are shown in Figure 11.7. if the

wavc impinges on the pressure release surface, and if the second surface

is rigid, the solution is similar except that the term it/4 is replaced by
- ~ T•e• ••U1L of t .o..pUt Con is ls plotted in Figlure 11.7~~~J ..... nm• ... . al so inc r2u _ i 7

For nonynal incidence, the curves are practically independent of the

impedance of the material in the shadow space. It follows from the derivatiion

in section ( IX), that the solution near the shadow boundary is entirely

independent of the surface properties, and that it does slightly- depend on

the impedance of the surface in the shadow space as the field point moves

towards the diffracting plane. As a consequence of this dependency, the

zcro in the diffracted field which for q; /2 occurs at exyactly zero degrees

for the rigid-rigid sitraight edge is shifted to about 655 for the rigid-

pressure release straight cdc. Figure ll.Sa shows the exact solution for

the rigid-rigid straight edge, Fig. 1..Sb that for the pressure release-

release straight edge. Fi•urc 11.9 shows for coniparisori the Kircihofuf

approximation, which as would be expected, leads tu vcry good agreement in

most ouf the angtlar raiJg..
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?igure 11.10 shows the exact solution for a 90 pressure release-

rigid rigid, and a rigid-pressure release wedge. For comparison, the

diffraction at similar rigid-rigid and pressure releac.. - pressure-

release wedges are also entered. Again, the Kirchhoff theory would lead

to a very good approximation of the exact curves. For instance, if the

incident wave impinges on the pressure release surface at eo = 1200, its

shadow boundary occurs at yp = - 600. The shadow boundary of the reflected

wave which now is reflected in antiphare, occurs at p = - 300. The results

for- an incident angle of 135 are not included. This position lies along

the face of the wedge. The solution for this case does not exist. As

stated previously, the stationary phase method assumes that the field point

is very far from the diffracting edge, and since the an~gle of incidence

lies alonog the surface of the w,,edge, all the incident energy is absorbent

for these rays propagating at grazing.

iI

tI
I ' . .. "' i I I I III
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XII. TIE PHYSICAL INTERPRETATION OF THE MALYUZHINETS SOLUTION

The exact solution for a straight edge with non rigid surfaces is based

on the solution for the straight edge with pressure release surfaces. There

is a good reason for using the pressure release solution as a starting point

and to modify this solution for impedance covered surfaces. A wave pro-

pagating in the direction of the plane of the edge towards the edge of a

pressure release straight edge is backscattered, i.e. the diffracted field

is not zero for -o = 0. It is physically obvious that an impedance covered

straight edge will also backscatter, whereas a rigid st-.aight edge will

have no effect at all on a wave that propagates parallel to its plane,

q being zero. The wave passes left and right along it without generating

a diffraction field. Thus a solution based on the field scattered by a

rigid straight edge would break down tor pfo = u. The solution is finite for

(p = + $ for the pressure release wedge, and for all wedges whose faces have

finite impedances regardless of how small their impedance may be. The

vanishing of the basic solution for cp = ± 4 is therefore of no consequence.

The solution for the pressure release wedge then is given by the sum

of the two Somnerfeld terms, or by the sum of the two Malyuzhinets terms.

The Sommerfeld and the Mulyuzhinets teins represent different partial

fraction representation of the exact solution for the pressure release

straight edge. The Sormnerfeld solution is equivalent to superposing the

fields generated by a source and by an image source located behind the corn-

plementa;j straight edge.

however, the image concept breaks down when the surfaces are impedance

covered. An infinite number of imange sources of strength R, Bt, J, etc.

would then be needed where R is the reflection factor of each of the two

surfaces, and the Sommerfeld representation becomes useless.

i ______________ __
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The Malyuzhinets term M2 114 (p + v)/ll(@po) depends almost only on 0+;

and it depends only to a small extent on the impedance of the surface on

the shadow side of the straight edge* in the angular range near zero. It

reduces to the amplitude of the reflected wave at the shadow boundary of

this wave, and to unity at the shadow boundary of the irncident wave. For

other angles on the positive side of the straight edge, this field is

proportional to the exit factor of the reflecting (upper) surface. The

field described by this term is not very different from the Kirchhoff

fields generated by the shadow boundaries of the reflected and the incident

wave. But as we penetrate into the shadow region, the contribution of the

shadow boundary of the reflected wave practically disappears.

In the region around cp = 0, the Malyazhinets term ((p + TO- )M2/) (cpo) describes

a field that is stronger than the Kirchhoff field. Because of the impedance

cover, the surfaces of the straight edge move in and out like the surfaces

of a transducer; they are forced to vibrate by the incident wave. If

there were no edge region, the impedance covered surface would reemit the

incident wave in form of the reflected wave and would simply act like a

reflector. However, the wave that passes the edge represents a reservoir

of energy. Some of the energy is also sucked into the edge region, a wave

is always bent inLo an impudari:e surface and. rjitted as an edg,.e wave. The

. ':1p - ,r) V (pr Hq O±)•fr - 04_)(C(p - Sn -I- 0_) ( - _

an •'•'(,r- - c±0 + 1 o)(p,-2 -O o) f'or cp >O,
'• because I • if• -(11<

! _ forail

a lso

+ (p) +I 2it 4 0 )t' (c ±- (q, - 0

it-.it +
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first term of the Malyuzhinets solution then seems dominantly to represent

two fields. The function 4(y - n) depends almost exclusively on 0_. In

the front space, *(vp - A) depends very weekly on 0 and is practically

independent of 0+. This field can therefore be interpreted as a further

contribution of the shadow boundary of the incident wave to the diffraction

field. In the space cp < 0, this term becomes proportional to the exit factor

of the surface 0_. The term 1,t(cp - -n)/w(cpo) can then be interpreted as

the field that is reemitted by the vibrating edge region. Figure (11.5)

shows a schematic representation of the nature of the two terms of the

solutions on the two sides of the diffracting semi-infinite plane.

The exact solution proves that the Kirchhoff concept of the difrraction

phenomenon being solely generated by the shadow boundaries is only a first

approximation for impedance covered surfaces. According to the exact theory,

some of the incident energy is scattered at the edge because of the dis-

continuity of the acoustic properties of the medium due to the impedance

cover. Because of its finite impedance, the edge region is compressible

and scatters sound like a chain of air bubbles, located at the edge,

scatter sonnd in water. This scattering effect seems to be greater the

smaller the surfaut ..ip...dance. A pc. matchpd edgc thus scatters almrost as

much sound as a rressure release wedge; for instance, when the wave pro-

paL atcs into the edge parallel to an impedance covered plane. In

addition, the edge region and the ,hole surface of the straight edge

recmits the incident energy that is not scattered according to the exit

law. Tlie anplitude reemitted ray is proportional to the exit factor oif

the surface. The diffracted Brewstcr angler; of the impedance covered

surfaces, regardluss of the position of the shadow boundaries. If the
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Kirchhoff concept would apply, then the diffraction field would be pro-

portional to the reflection factor for the angle of incidence of the

radiation and would not show any Brewster angle dependence.

The curves presented in this report show the variations of back-

scatter and diffraction in those instances that might be of practical

interest. The various approximations are of considerable interest since

they help to understand the physics of diffraction. But on the basis of

the cosine representation of the Malyuzhinets functions, practically exact

computations can be performed with the seie case as Sommerfeld or Kirchhoff

approximations. There is thus no need to investigate wedge or edge

diffraction with the aid of approximate theories.

I

!I

A' -
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APPENDIX A

Representation of the Functions

The following representations of the jr%(a) functions have been derived

in the above Section V.

H

Filf it.v dvdi'%(a)= L tgexo (v-[) (Al)

0 -i-o

wc(s) = exp ln(1 - i tg -a th nv- dvJ (AE)

it IL - a5'
n=l m--1 , 7(?n - )" +- (1177(2m -17)-

The form Al is derived in very much the same manner as Eq. (5.18) except that

the w integration is performed first in. Equation (A2). By deforning the path

of integration from infinity above the real axis to zero and back to infinity

U'j.Lywthi Ut al. t-r£n- th rsde.th olwnrr _ ______ are

obtained for the rational ratio 4(/t = n/m and a(k,A) L ( 1 2k - 1

we have for odd and even n, respectively:

/ ()sk-i - e(k, c

u(A5)
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r a
i( a T (a) 1() 1 PII/•2 - s u du (A6)

v/ ( cos 'It (a eCL / ' (osA6
0

1 (a)- cos 116 (a- t) cos i/6 (a + 7) (A7)
cos 2 (r/6) cos 1/6

a sin V +4c cos C sin 2v (A8)T' dv
,r(a) = exp o

For large values of Irm(z):

Im _ )L 2 ~* ~ d (A9)
0Vz4  ep -Cosh S

and

The following relations can be derived for the Malyuzhinetz finctions either

from their integral representation or residue evaluation of the contour

integral or from the basic properties of these functions (mrnromnorphic in

strip, poles and zeroes known).
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(c+ ~)'(z-~)=4,()Cos (All)

) 2 () cos " (a + (A12)

+ =) YO$, 2 =%(() /2 (a) (A13)

y(6 + 20) * (a) (v() 2 *D/2 (a + (D) (AlL)

K(a + 20) 1- (A15)

-- (a_-2F= cot 2 ( )

+0 ( ) = cot; (A16)

=tan 1 -
tayu( - 2(D) (2y

+ 2 E( -Cos (A18)%(• +- 1P *,(a 22.) = T(• 2o

c( +t- n) •V(D) = t£Q) cos + ( ) (A19)

W(D(a) ~(a - :T) 2 ) 2 o s (a - ý) (A20)

•, •( + • •z(2 -, (A21

*,[z + (2,D +-)] = A sin cosec - (2(D - 4-

(2, + -2 + (2i' , " ' oA- ))

where zp are the values ,,f z for t1le pKLes of P(D(z) and z those for the

zeroes.

-.........- 
J.... .... .
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The residues r+ at the poles a+ are easily determined by means of the

relation

T[z + (2+ ) + sin cosec 7 *Z(2 -j-z) , (A23

which puts the poles into a trigonometric factor.

Two more forms for the complex *(a) function are of interest. They are

derived with the aid of the relations that apply for the *,(a) functions.

,(cz) = %(c + ' + e+) 4 (• + 0 - 0+) t(a -. +D + 0)t% -- e)

[Cos (+ 0 - .6 +) Cos e

1 1

X1 (A24i)% (a+ TI , - -) • (Ct- 0 + • + a)+/

also if 0 0 ¶
+

,(c.) wC+ + 0+ 0) t,¢(a - , + 0) *,,(ct + 0 -0) ,r,/( - -0) (A25)

= %/2 (a + 0) D/2 - 0)

if

-+= = = 0 (rigid wedge)

(a) = V4- -i- (L0 - D (a + o- ),(a - + - (a -q-) q,

% (Cos ( sos ," "o '.
q)2 2 ,M



Hence

g(c- i)-cos (- ( ) i

1(1+I) =cos (T-+-)

and for 4) = T:(

(y- ) = const. sin (</2

4(• + o) = const. sin T/2

If

-+ -a- 2 j2

-- = 1 regardless of at and (p

If one surface is pressure release

2 j, 4- 0 (A26)

and the two •V factors that contain 0 drop out of the solution

If a surface is rigid, 0 < /2 , then

(a + q) + .k2 ( D - = * (L) cos (A27)

and the two terms in the soluLion q(cp + ý)/Q((Po) can be replaced by the two

terms co) respectively.
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If the front surface is impedance matched (z+ = pc), then 0+= 0, and:

+ b) -D 0-+ D 0)

* 2 -.

... ..
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APPENDIX B

Comparison of the Malyuzhinets and the Sommerfeld Solution

The Sommerfeld solution applies only to the rigid and the pressure

release wedges. It consists of two terms, one of which represents the field

of the incident wave, the other the field generated by an image source (hidden

in a Riemann space). It is of interest to force the Malyuzhinets solution

into a similar form, to investigate whether in the general case a simple analysis

is possible in terms of fields generated by a real source and an image source.

'Me Malyuzhinets solution is given by

Cos 0 12~ +___
u(r,mp,k) 2< ' ro + -rp+_____

silln - p-it(-) sin o- 2 in - + Lt) - sin 2ik-r

(Bl)

and the Somimerfeld solution is

u(rcp(k) -7 sin r F __ o-__ + o jk(r +
Cos -- sCos - +os (

VV V V

"w;he re

2,' (B5)

For the straight edge, v 2. Rc two angular functions in (152) can be written

as follows:

S 4--l + 1 + + 2 (I-, C ") -- ' +go I_ g

008- 00 -C,0,2 coo c oO LO; -- + Cos

V V V V

Let us write their sum with a crmon, denominator. '
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For the minus sign we have the numerator

If q+ Po .p - q °q cp -( q~ c)o

CoS -- 0 - Cos --I + COS P - --O Cos T 4COS = 2 Cos - -COS
V V V V V V V V

(B5)

For the plus sign we get

Cos -! 4. COS + Cos - - COS = 2(cos - sin-- sin 2) (B6)
VV V V V V

Thus we have

2 Cos - cosV V
S - s z = (. (P, )

(CIS -Cos -- ,)(cos - + Cos
V V V V

and
To . CP

2((Cos - sin sin

(COS co )(cos + cos 2)S- V V V

The Malyuzhincts solution contains the tems and -L where

1 1 1. i

4 M qsin it- - sil Sinn s -n sin o
V VV

P (P 4 T +PI-f C4f-4P

2 sin COS 2 sin Cos2ýV ZV 2I V

019),
* (Il)

sin + -) o - If
sin() - [,sin sin 21

(p-f- (+r-DpI ) (P 4 )o)i0 0
2 sin sin - 2 cos co0

2v 2v 2v
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[sin + sill[sin sin -nin
___ VV v

[cos- - cos [COS + CosS v v v .

[i - - sin-]_ _ °
V v 2 sin cos

[cos [ CoS --- L Aoes C cos 0 (Cos TK Cos (Cos- v v v v + Cos ) osv - _

(B11)

Sinilarly we have

1 1

1M M skin -sin9 -n
V v

cp

-i- [so si C

E in- 0P + L n --1-si -P i
v v v"J V.

(Cos 3-Cos -)(o +Cs 2
V2 -T-h Vo - V:~-

2 sin 0 + sin -- cos-- v v

( - Cos 0 )(cos + Cosvv v

We can express the Mal.y-uzhincts terms in tcrms of the Sommerfocj terms as

follows:

Si2 sin- cos -
V V

SIt4 (os• -v v " v v

2 sin 3 s sin
v( ) =V

2 COS COE; ccs
V V V7
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]* l 2 [- sin ..o + sin cos
Vp - ( V V Cp

(Cos cos L )(cos - + cos

+(Lisin -- + sin •v cos.-.()
= + • To <p (S l + 2()•

(cooy~ sin- sina)

The Malyuzhinets solution can now be written as follows

v)- + -,( + r) = A (B15)

)- A A))- (- + +Cin (1B17)

(CO sin To + sin cos)

v v v (m)

si (--- + Bin cos

1v(o 0 V V

=~ ~ ~ ~~~(o si E(A si -+Bcsqo( i in

cos -- os - sin sin c s n L

v v v

co sin osi-)

[- i -•+VV V V V (1]-6)

V o 9

Cos - -s~ -- sin -- 5fl-

V V

For~ ~ ~ ~~T tbCrsucrlaewde /l(Po I, C/(P)=O ndtcslto

B eo(-)( n- + sill L os-
+ [-A sin -f ___ V V ;(B

C it .4)0 rp 2!
co2 - sin - sin -

-- For thu pressure releua[;( wedg~e, A/Vý((P) 1, D/V (CI) 0 0, and the Colution

becomes idcntical wiith that given by gomnerfeld. For the straight ed(ge,

this Eq. l9 reduces to

1 r{cp)y cos'(P/") /2)coS(/ 2

-. sinf(;)/2 - n - -
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I -

*(t) + VC + [*t ) + L'(- -.-P±i) 0/) 11

1Psin 'PT2] _

2

0 0
sico po/2 cpc

2

(B20)
The :first factor

Co 1 2l

has a pole at p = -it + (p this pole occurs at the shadow boundary of the

transmitted wave. The second factor

S231 (B22)

S• = P + (P

Cos 2

has a pole at q it - p at the shadow boundary of the reflected wave.

For the shadow boundary of the incident wave, p = - it + cy". The first

bracket with the factor in front reduces to the Sommrerfeld first term: the

.3Ccond bracket with the factor in front reduces to the shadow boundary of the

reflected wave to the classical reflection facLor (1/2 '(27t - )

times the second Somerfeld term. But the term differ,," from the Sorfnerie24)

terms in thu ranugc between the two shadow boundarics. This all nieuna that

the impedance surfaces generaLe some inheraction between te two fields and

that the exact solution therefore cannot be obtained by t.e method of soniple

image siour-es. The result;s show that, th•e Malyuzhi .iits fonr of the solution

is considerably simpler. Forcing it into the konImmerfUld form helps in nu wajy.
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Second All-Union Symposium on Wave Diffraction, June 4-9, in
Corkiy, 1,96Z: Fok, V.A. , Vaynshteyn, L,.A. , Malyuzhinets, G. .,
"Transverse Diffusion in the lDZiffraction of Short W.:aves on a Helical
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MALYUZNH-IETS, G. D.

() Malyuzhincts, G. D,, "The Excitation, Reflection, and Enission of
Surface Waves. on a 'edge with Given. Impedances of the Faces,
Buklady Akade.nii Nauk S, S.-.., 195e, Vol 121, Nr 3, pp 436-439.

Malyuzhinets, G. D., "On Scattering of Sound Doe to Irregularitics
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321-334.
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on Sept 1-8, 1959: Malyuzhir.ets, G. D. (")'The Dcveloumcnt of
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Physical Acou5;:ic', andf IYlL~ asuniis, M~ar2h 3-7, 195;5 in ocw
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MALYUZIIDNETS, GD.
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The following paper was presented at the All-Union Conference
on Acoustics, June 24-29, 1.957, in Moscow: Malyuzhinets, C. D.,
"Emission and Diffraction of Sound.

The following paper was presented at the Fourth All-Union Acoustics
Conf, May 26 to June 4, 1958, in Moscow: Malyuzhinet.s, C,, D.,
"Transversal Anmplitude Diffusion in Connectioi.- with the Refraction,
Propagation and. Reflection of Waves.,"

(3) Malyuzhinets, G.ID., "Conversion Forrnula for Sommerfeld Integral, "

Dokiady Akadernii Nauk S. S.S.. ., 1958, Vol 118, Nr 6, pp 1099-1102.

Malyuzhinets, G. D., "The Connection Between 'che Revision Formulas
of the Somineýreld L.tegral and the Formnulas of Kontorovich-
Zommer.da, Dokiady .:Akad,,emii Nauk 5. S. S.R., 1958, Vol 119,
Nr 1, ,p 49-51.

0. U. M1ALYUZHEUTETS

Moscow, Aku.sticheshly Zhurral, No 4, 1969; pp 629-630

Excerpts• Prof Georgiy Danilovich Maiyuzhinetz, Doctor of
.Physicomathematical Science, died suddenly on 1.4 August 1969
at the ago of 59. Nalyuzhinets was a prominent Soviet specialist
in acoustics and theory of wave diffraction, member of the Conmmunist
Party of the Soviet Union, and head of the laboratory of the Acoustics
Institute of the USSR3, Academy of Sciences ....

Malyuzhinets was very dctiVe in directing. graduate students and

in giving lectures both in schools (MNoscow State University, Mioscow
P•hysicot echicai institute and in research institutes. Ilis comprehen-
sive apý;roach to scientific problems plus his great intuition in physics
attracted thc-youth to himn. Many young scientists did their disserta-
tions undecr his direction or with his constant advice,

Malyuzhincts attached exceutional importance to the training of
spcdi&i,,cs in diffraction theory, Ile prepared and gave an original
dourse on ditfraation theory for students in the Moscow Physico-
tecbnical Yznstitute,. He strove to set up diffraction theory as a
speciality i.n the Mechanics and Mathematics Faculties of universities,

joar he was cornpletely aware of the increasingly important role
played Ly prescut-day mathern-iticai nethods in solving the
problems of viavc diffractiuon. As an activw-cproponent of more
inathcmatical training for,,s entists concecrid with wave
difraction theory, Mvliyuzahinets spared no efforts to master for

himself new in-athenatical xe'hods and. concepts ....

•ff,. ,-- .• .. .... .~*..... .... .. ..... V.. fM 4,• . i•s, a.., snl,4,,. ¼.• ....... •. . .......... .. ......... ........ ... . . .-. =- t .
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